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A property of the vacuum stress tensor in static Casimir
theory
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Abstract. A quantum-field theory defined in any space having arbitrary static background
structure along some axes but translation invariance along otherfree directions (labelled byi)
is considered. This system has a renormalized vacuum-stress tensorTµν satisfyingT00 = −Tii .
This relation has nothing to do withTµν being traceless or divergence free (neither property is
assumed).

In the course of calculating [1, 2] the renormalized canonical and improved vacuum-stress
tensors,Tµν and2µν , respectively (i.e. the vacuum expectation values of the corresponding
operator-valued tensors) for many Casimir systems which have translation invariance in
some spatial directions (call the coordinates corresponding to these free directionsqi) but
not in others (denoted byQi) we noted the evident existence of a general theorem for
massive or massless scalar fields:

T00 = −Tii 200 = −2ii (1)

wherei labels all free directions. Numerous examples make clear the background structure
along directions orthogonal to the free directionsqi has no influence on these statements.
Hence they should be easily proven with unrestricted generality. We provide this proof
here.

The relations (1) probably seem familiar. For example, in the classic calculation [3] of
the vacuum-stress tensorTµν of the electromagnetic field between parallel metal plates (at
x1 = 0, L) Tµν is traceless and conserved. From these properties and from the symmetries
of the problem it follows thatTµν must have the form [3]

Tµν = constant

[
1

N + 1
ηµν − nµnν

]
ηµν = diag(1,−1, . . . ,−1)

whereN is the dimension of space andn = (0, 1, 0, . . . ,0) is the unit (N + 1) vector
perpendicular to the metal plates. ThusT00 = −Tii for i > 1.

Equations (1) are substantially more general statements about tensors which may be
more or less complicated functions of the non-free coordinates. For a scalar fieldTµν and
2µν are in general neither traceless nor divergence free. Nonetheless equations (1) hold
and render many repetitious calculations unnecessary. In this paper we prove equations (1)
directly using mode-sum formulae forTµν,2µν . Then we observe that equations (1) have
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a general covariance basis. This simple theorem is thus seen to be valid for quite general
quantum-field theories.

For a scalar quantum field̂φ defined on any static space one can construct the
components ofTµν and2µν from the vacuum expectation value〈φ̂(x)φ̂(y)〉 by performing
the differentiations with respect tox and/ory appearing in the definition ofTµν and2µν

and then lettingx → y. This expectation value is most conveniently obtained as follows. In
the presence of background structureV (x) coupled bilinearly toφ̂ and including possible
spatial curvature,φ̂ satisfies [� + V (x)]φ̂ = 0 (in the massive caseV (x) is meant to
include the mass term). Defining the modesφn(x) as the solutions of the eigenvalue
equation [−4+V (x)]φn = ω2

nφn the field operator̂φ(x0,x) is expressible in terms of these
and the eigenvaluesωn in the familiar way

φ̂(x) =
∑
n

1√
2ωn

[âne
−iωnx0φn(x)+ â†neiωnx0φ̄n(y)] (2)

ân, â
†
n fulfilling the usual commutation relations of annihilation and creation operators and

φ̄n(x) being the complex conjugate ofφn(x). Inserting this expression in〈φ̂(x)φ̂(y)〉 one
obtains

〈φ̂(x)φ̂(y)〉 = 1

2

∑
n

1

ωn
e−iωn(x0−y0)φn(x)φ̄n(y). (3)

(The sum on the right is, of course, to be understood symbolically, implying also integration
over continuous parameters.)

Our only assumption will be that space is a direct productM × Ef of some static
manifold M which may be arbitrarily complicated (because it plays no role in the
considerations to follow) and anf -dimensional free, boundaryless subspaceEf . The spatial
coordinatesx then separate into coordinatesQ onM and coordinatesq = (q1, . . . , qf )

(chosen Cartesian) onEf : x = (Q, q). The background potentialV (x) = V (Q), if
present, depends only on the non-free coordinatesQ. The modes factorize

φn(x) = ψn(Q)(2π)−f/2eip·q

whereψn(Q) are solutions of the eigenvalue equation

[−4Q + V (Q)]ψn(Q) = λ2
nψn(Q) and ω2

n = λ2
n + p2. (4)

Consequently the heat kernel corresponding to the system under consideration factorizes as
well:

K(t |x,x′) ≡
∑
n

e−tω
2
nφn(x)φ̄n(x

′)

= K(t |Q,Q′)K(t |q, q′)free (5)

K(t |q, q′)free= (4πt)−f/2e−(q−q
′)2/4t . (6)

The heat kernelK(t |Q,Q′) onM is constructed fromψn(Q) andλn just as isK(t |x,x′)
from φn andωn in equation (5).Kfree in equation (6) is thef -dimensional free-space heat
kernel.

Following standard analytic continuation methodsK is Mellin-transformed to∑
n

(ω2
n)
−sφn(x)φ̄n(x′) = 1

0(s)

∫ ∞
0

dt t s−1K(t |x,x′) (7)

where s is complex. As initially defined equation (5) isunrenormalized. With x = x′
the mode sum on the left of equation (7) diverges (converges) for Res 6 N/2 (> N/2)
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where—as above—N is the dimension of space. Correspondingly withx = x′ the integral
over t on the right diverges (converges) for Res 6 N/2 (> N/2), due to a non-integrable
singularity of the integrand att = 0. At least forM 6= 0 there are no divergence problems
at the upper end of the integration interval since in this case, because ofω2

n > M2 > 0, the
exponential, exp(−tω2

n), in the definition ofK in (5) provides an exponential cut-off of the
integrand fort →∞.

Ultraviolet renormalization consists of subtracting the leading divergent terms from
K(t |x,x′), and thereby the leading divergences from the mode sum on the left. There is
a traditional way of doing this. Forx = x′ the asymptotic heat kernel expansion (see e.g.
[4, 5])

K(t |x,x) ∼ a0t
−N/2+ a1t

−(N−1)/2+ · · · t → 0+

identifies the divergent terms in equation (7). These terms can then be subtracted—as
many as need to be—to define therenormalizedheat kernelKR from which we obtain the
renormalizedmode sum∑

n

(ω2
n)
−sφn(x)φ̄n(x′)|R ≡ 1

0(s)

∫ ∞
0

dt t s−1K(t |x,x′)R. (8)

All we need here from this general theory is that it exists. The integral (8) is by construction
convergent for the range ofs in which we use it.

Now setQ = Q′ and insert equation (5) into equation (8)∑
n

(ω2
n)
−sφn(x)φ̄n(x′)|R = 1

0(s)

∫ ∞
0

dt t s−1K(t |Q,Q)R(4πt)−f/2e−(q−q
′)2/4t . (9)

BecauseK(t |q, q)free = (4πt)−f/2 is merely a power oft , the subtraction procedure
transfers smoothly fromK(t |x,x′) to K(t |Q,Q′). Operating on equation (9) with
(∂/∂qi)(∂/∂q ′i ), (∂/∂qi)2 and(∂/∂q ′i )2 and then settingq = q′ simply generates integrand
factors 1/(2t),−1/(2t) and−1/(2t) respectively in equation (9). Thus the renormalized
mode sums satisfy (in thes range where we use them)∑

n

(ω2
n)
−s |∂iφn|2R = −

∑
n

(ω2
n)
−sφn∂2

i φ̄nR

= −
∑
n

(ω2
n)
−s(∂2

i φn)φ̄nR

= 0(s − 1)

20(s)

∑
n

(ω2
n)

1−s |φn|2R. (10)

The thing to do now is write down the mode sums representingTµν and2µν obtained from
equation (3). These can be found in [1] and elsewhere in the literature of course. For
completeness we give the necessary formulae again here:

T00 = 1

4

∑
n

(
ωn + M

2

ωn

)
|φn|2+ 1

4

∑
n

1

ωn
|∇φn|2 (11)

Taa = 1

2

∑
n

1

ωn
|∂aφn|2− 1

4

∑
n

1

ωn
|∇φn|2+ 1

4

∑
n

(
ωn − M

2

ωn

)
|φn|2

a = 1, 2, . . . , N (12)

200 = 2N − 1

4N

∑
n

ωn|φn|2+ 1

4

∑
n

1

ωn
|∇φn|2+ M

2

4N

∑
n

1

ωn
|φn|2 (13)
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2aa = N + 1

4N

∑
n

1

ωn
|∂aφn|2+ 1

4N

∑
n

ωn|φn|2− 1

4N

∑
n

1

ωn
|∇φn|2− M

2

4N

∑
n

1

ωn
|φn|2

−N − 1

8N

∑
n

1

ωn
[φn∂

2
a φ̄n + (∂2

aφn)φ̄n] a = 1, 2, . . . , N. (14)

Note that equations (12) and (14) hold for all spatial dimensions, not only the free ones.
The proof of equation (1) can now be completed.

Equation (10) shows that∑
n

1

ωn
|∂iφn|2R = −

∑
n

1

ωn
φn(∂

2
i φ̄n)R

= −
∑
n

1

ωn
(∂2
i φn)φ̄nR = −

∑
n

ωn|φn|2R (15)

where∂i means differentiation with respect toqi, q ′i (i = 1, . . . , f ). Then equations (1)
follow at once from equations (11)–(14).Tµν and2µν are functions only of coordinatesQ
of course.

It is easy to show [1] thatTij = 0,2ij = 0 for i 6= j . Thus equations (1) really tell us
that

TAB = ηABT (Q) 2AB = ηAB2(Q) (16)

whereA,B are indices running over 0, 1, 2, . . . , f . Here we are introducing an (f + 1)-
dimensional Minkowski sub-spacetimeMf+1 with coordinatesxA = (x0, q). In Mf+1 the
subtensors of the full tensorsTµν,2µν displayed in equations (16) have the covariant form
shown. The scalar (under Lorentz transformations inMf+1) functionsT ,2 depend on the
non-free spatial coordinatesQ. These functions are analogous to cosmological constants in
Mf+1 (of course they are only independent of the coordinatesxA onMf+1). The subtensors
(16) are conserved inMf+1

∂BTAB = 0 ∂B2AB = 0. (17)

If we had been more clever could we have predicted equations (16)? Yes—for the same
reason one can predictTµν = ηµν3 in Minkowski spacetime in the complete absence of
background spatial structure. There are no preferred directions inMf+1 and the only tensor
available for the construction ofTAB,2AB is ηAB . This is, of course, the easiest path to
equation (16). Still, it is perhaps not a bad thing to have an explicit derivation, if only to
verify that the field-theory machinery is working properly. (Verification of equation (16) in
other field theories could similarly be a useful check—see below.)

Once one has reached this point it becomes obvious that equation (16) holds at a
level far more general than the single-scalar-field context in which we first derived it.
Consider a relativistic field theory (including fields with spin and interacting fields) defined
on Minkowski spacetimeMN+1. Imagine redefining this theory on spacetimeMf+1 ×M
(with the same dimensionN + 1 of course) to create a static Casimir effect of arbitrary
complexity with M deforming (away from spatial uniformity) the quantum fields of
the original theory. The subspaceM contains background spatial structure (boundaries,
topology, local curvature, etc) which interacts directly with some or all of the fields of the
theory. Nonetheless inMf+1 there are no preferred directions. Clearly, as long asηAB
remains the only tensor available inMf+1 for the construction of theMf+1 subtensors
TAB,2AB we can expect equations (16) and (17) to hold.

It would be surprising if such a general and simple theorem has not previously been
noticed. Yet we never see it used in work on Casimir theory or in related areas of quantum
field theory. Being a real labour saver this theorem deserves to be widely known.



A property of the vacuum stress tensor 6741

References

[1] Actor A and Bender I 1996Fortschr. Phys.44 281
[2] Actor A and Bender I Vacuum distortion by semihard boundariesPreprint
[3] Brown L S and Maclay G J 1969Phys. Rev.184 1272
[4] Branson T and Gilkey P 1990Commun. Part. Diff. Eqns15 245
[5] McAvity D H and Osborne H 1991Class. Quantum Grav.8 603


